#### SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)



Siddharth Nagar, Narayanavanam Road – 617683

#### **QUESTION BANK (DESCRIPTIVE)**

**Subject with Code Fiber Optic Communications** (19EC0440) Course & Branch: B.Tech & ECE

Year &Sem: IV-B.Tech & I-Sem **Regulation:** R19

### UNIT -I **INTRODUCTION**

| 1.  | Explain the Elements of Optical Communication System with neat sketch.                                                                                                                                      | [L2] [CO1] | [12M] |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|
| 2.  | a) List the applications of optical fiber communication.                                                                                                                                                    | [L1] [CO1] | [6M]  |
|     | b) Derive the expression for i) Acceptance angle ii) Snell's law                                                                                                                                            | [L3] [CO1] | [6M]  |
| 3.  | a) Derive the expression for i) Critical angle. ii) Numerical aperture.                                                                                                                                     | [L3] [CO1] | [6M]  |
|     | b) Explain the ray theory transmission with neat sketch.                                                                                                                                                    | [L2] [CO1] | [6M]  |
| 4.  | a) Describe the characteristics of multimode Graded Index fiber with neat sketch.                                                                                                                           | [L2] [CO1] | [6M]  |
|     | b) A light ray is incident from medium-1 to medium-2. If the refractive indices of medium-1 and medium-2 are 1.6 and 1.36 respectively, then evaluate the angle of refraction for an incident angle of 30°. | [L4] [CO1] | [6M]  |
| 5.  | a) Consider multimode fiber that has a core refractive index of 1.488 and core cladding index difference of 2.0%. Calculate numerical aperture, critical angle and acceptance angle.                        | [L4] [CO1] | [6M]  |
|     | b) List out the merits and demerits of optical fiber communication.                                                                                                                                         | [L1] [CO1] | [6M]  |
| 6.  | Describe in detail about (i) Single mode and (ii) Multimode fibers.                                                                                                                                         | [L2] [CO1] | [12M] |
| _   | a) Illustrate the impact of group delays in optical communication.                                                                                                                                          | [L2] [CO2] | [6M]  |
| 7.  | b) What is attenuation? Explain in detail.                                                                                                                                                                  | [L2] [CO2] | [6M]  |
|     | a) How the attenuation is caused by absorption losses?                                                                                                                                                      | [L1] [CO2] | [6M]  |
| 8.  | b) Explain the phenomenon of Rayleigh scattering.                                                                                                                                                           | [L2] [CO2] | [6M]  |
| 0   | a) What is Dispersion? List the various types of dispersion.                                                                                                                                                | [L2] [CO2] | [6M]  |
| 9.  | b) Explain in brief about inter modal dispersion.                                                                                                                                                           | [L3] [CO2] | [6M]  |
|     | a) Deduce the expressions for fiber Core and Cladding losses.                                                                                                                                               | [L4] [CO2] | [6M]  |
| 10. | b) Explain various types of fiber bending losses.                                                                                                                                                           | [L3] [CO1] | [6M]  |

# UNIT -II FIBER OPTICAL SOURCES AND COUPLING

|    | a) Explain in brief about direct and indirect band gap materials in detail.        | [L2] [CO3]      | [6M]   |
|----|------------------------------------------------------------------------------------|-----------------|--------|
| 1  | b) Explain LED Structure with neat sketch.                                         | [L2] [CO3]      | [6M]   |
|    |                                                                                    | FT 01 F C 0 0 1 | [(),(] |
|    | a) Illustrate on light source materials in detail.                                 | [L2] [CO3]      | [6M]   |
|    | b) A planar LED is fabricated from GaAs which has a refractive index of            |                 |        |
|    | 3.6.(i) Calculate the optical power emitted into air as a percentage of the        |                 |        |
| 2  | internal optical power for the device when the transmission factor at the          | [L3] [CO3]      | [6M]   |
|    | crystal-air interface is 0.68.(ii) When the optical power generated internally     |                 |        |
|    | is 60% of the electric power supplied, determine the external power                |                 |        |
|    | efficiency.                                                                        |                 |        |
|    | a) Explain about the surface emitter LED with neat diagram.                        | [L2] [CO3]      | [6M]   |
| 3  | b) Describe about the modulation of LED in detail.                                 | [L2] [CO3]      | [6M]   |
|    | a) Illustrate the working principle of an edge emitter LED with neat diagram.      | [L2] [CO3]      | [6M]   |
| 4  | b) List the advantages and disadvantages of LED.                                   | [L1] [CO3]      | [6M]   |
|    | a) Deduce the expressions of quantum efficiency and LED power.                     | [L4] [CO3]      | [6M]   |
| 5  | b) Illustrate about Injection Laser Diode with suitable diagram.                   | [L2] [CO3]      | [6M]   |
|    | a) Explain about resonant frequencies of LASER Diode.                              | [L2] [CO3]      | [6M]   |
| 6  | b) Calculate the GaAs optical source with a refractive index of 3.6 is coupled     |                 |        |
|    | to a silica fiber that has a refractive index is 1.48. If the fiber and the source | [L4] [CO3]      | [6M]   |
|    | are in close physical contact then find the Fresnel reflection at the interface    | [L4] [CO3]      |        |
|    | and power loss in dB.                                                              |                 |        |
|    | a) Derive the expressions for LASER modes and threshold conditions.                | [L3] [CO3]      | [6M]   |
| 7  | b) What power is radiated by an LED if its quantum efficiency is 3% and the        | [L1] [CO3]      | [6M]   |
|    | peak wavelength is 670nm?                                                          | [L1] [CO3]      |        |
|    | a) Illustrate about external quantum efficiency of LASER.                          | [L2] [CO3]      | [6M]   |
| 8  | b) Compute the rate equation for LASER diode.                                      | [L3] [CO3]      | [6M]   |
|    | a) Explain in detail the various Characteristics of Light Source.                  | [L2] [CO3]      | [6M]   |
| 9  | b) Describe about Temperature effects of Laser characteristics.                    | [L1] [CO3]      | [6M]   |
|    | a) Illustrate the working principle of Distributed feedback LASER diode.           | [L2] [CO3]      | [6M]   |
| 10 | b) The Radiative and non-radiative recombination life times of minority            | [L4] [CO3]      | [6M]   |
|    | carriers in the active region of a double heterojunction LED are 60 nsec and       |                 |        |
|    | 90 nsec respectively. Evaluate the total carrier recombination life time and       |                 |        |
|    | optical power generated internally if the peak emission wavelength is 870 nm       |                 |        |
|    | and drift current is 40 mA.                                                        |                 |        |

# UNIT -III FIBER OPTICAL RECEIVERS

|    | a) Explain the principle behind the operation of an PIN photo diode.                   | [L2] [CO3] | [6M] |
|----|----------------------------------------------------------------------------------------|------------|------|
| 1  | b) A photo diode has a quantum efficiency of 66% when photons of energy of             |            | [6M] |
|    | 1.6 x 10-19 J are incident upon it. (i) Find the operating wavelength of the           | [L4] [CO3] |      |
|    | photodiode (ii) Calculate the incident optical power required to obtain a photo        |            |      |
|    | current of 2.6nA when the photodiode is operating as described above.                  |            |      |
|    | a) Explain in detail the operation of Avalanche Photo Diode using suitable             | [L2] [CO3] | [6M] |
|    | diagram.                                                                               |            |      |
| 2  | b) In GaAs Photodetector a pulse of 86ns emits 6*10 <sup>6</sup> photons at 1300 nm    | [L3] [CO3] |      |
|    | wavelength. Average e-h pair generated are 6.4*10 <sup>6</sup> . Calculate the quantum |            | [6M] |
|    | efficiency of the detector.                                                            |            |      |
| 3  | a) Explain about avalanche multiplication noise in APD diode.                          | [L2] [CO3] | [6M] |
|    | b) Summarize the comparisons of photo detectors.                                       | [L2] [CO3] | [6M] |
| 4  | a) Explain the characteristics of fundamental optical receiver operation.              | [L2] [CO3] | [6M] |
| 7  | b) Explain the energy band diagram for a PIN photodiode with neat diagram.             | [L2] [CO3] | [6M] |
| 5  | a) Illustrate how noises are entered into photo detector.                              | [L2] [CO3] | [6M] |
|    | b) Analyze photo detector receiver with simple model and equivalent circuit.           | [L4] [CO3] | [6M] |
|    | a) Deduce the equation for S/N ratio of an optical fiber.                              | [L4] [CO3] | [6M] |
| 6  | b) Compute the Bandwidth of a photo detector having the parameters as follows:         | [L3] [CO3] | [6M] |
|    | Photo diode capacitance 3pf, amplifier capacitance 4 pf, load resistance 60 $\Omega$   |            |      |
|    | and amplifier input resistance is $1M\Omega$ .                                         |            |      |
| 7  | a) Compute the expression for response time of a photodiode.                           | [L3] [CO3] | [6M] |
|    | b) Explain the working of depletion layer photo diode with diagram.                    | [L2] [CO3] | [6M] |
| 8  | a) Explain the digital signal transmission for an optical receiver.                    | [L2] [CO3] | [6M] |
| 0  | b) Construct the optical receiver configuration.                                       | [L3] [CO3] | [6M] |
|    | a) What is a preamplifier? Classify them.                                              | [L4] [CO3] | [6M] |
| 9  | b) A given silicon avalanche photodiode has a quantum efficiency of 66% at a           |            |      |
| 9  | wavelength of 900nm. Suppose 0.6μW of optical power produces a multiplied              | [L3] [CO3] | [6M] |
|    | photocurrent of 10μA. Calculate the multiplication M.                                  |            |      |
|    | a) Explain the mechanism of error sources and disturbance in the optical pulse         | [L2] [CO3] | [6M] |
| 10 | detection with diagram.                                                                |            |      |
|    | b) Explain in detail about any one type of Preamplifier in detail.                     | [L2] [CO3] | [6M] |

#### UNIT -IV OPTICAL FIBER SYSTEM DESIGN & TECHNLOGY

| 1           | a) List the types of budget in optical communication system.                                                                                                                                             | [L1] [CO4] | [6M]  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|
|             | b) List the applications of Optical amplifier.                                                                                                                                                           | [L2] [CO4] | [6M]  |
| 2           | a) Explain Optical Fiber System Design Specification.                                                                                                                                                    | [L2] [CO4] | [6M]  |
|             | b) Explain the Rise Time Budget analysis with basic elements.                                                                                                                                            | [L2] [CO4] | [6M]  |
| 3<br>4<br>5 | a) What is bandwidth budget?                                                                                                                                                                             | [L1] [CO4] | [6M]  |
|             | b) Describe about power budget with examples.                                                                                                                                                            | [L2] [CO4] | [6M]  |
|             | . a) Describe about link budget calculations.                                                                                                                                                            | [L2] [CO4] | [6M]  |
|             | b) 2*2 biconical fiber coupler has an optical input power level of P0=400 $\mu$ w, the output power at the other 3 ports are P1=180 $\mu$ w, P2=170 $\mu$ w, P3=12.6nw. evaluate performance parameters. | [L4] [CO4] | [6M]  |
|             | a) Summarize on system performance using rise time budget of digital systems.                                                                                                                            | [L2] [CO4] | [6M]  |
|             | b) Explain the significance of system consideration in point-to-point fiber links.                                                                                                                       | [L2] [CO4] | [6M]  |
|             | a) Illustrate in detail about Link power budget.                                                                                                                                                         | [L2] [CO4] | [6M]  |
| 6           | b) Analyze the system performance using link power budget of digital systems.                                                                                                                            | [L4] [CO4] | [6M]  |
| 7           | a) Explain the optical multiplexing and de-multiplexing techniques.                                                                                                                                      | [L2] [CO5] | [6M]  |
| /           | b) Explain in detail about Optical amplifier with an example.                                                                                                                                            | [L2] [CO5] | [6M]  |
|             | a) Explain about bandwidth budget.                                                                                                                                                                       | [L2] [CO4] | [6M]  |
| 8           | b) An optical transmission system is constrained to have 600 GHZ channel spacing. How many wavelength channels can be utilized in the 1636 to 1666 nm spectral band?                                     | [L2] [CO5] | [6M]  |
| 9           | a) Sketch the optical multiplexing and explain each block.                                                                                                                                               | [L3] [CO5] | [6M]  |
|             | b) LED spectral width of 40nm has rise time of 16ns, $t_{mat}$ is 21ns, $t_{rx}$ is 14ns and $t_{mod}$ is 3.9ns. Find total system rise time.                                                            | [L3] [CO5] | [6M]  |
| 10          | Explain in detail about Receiver Sensitivity.                                                                                                                                                            | [L2][CO5]  | [12M] |
|             |                                                                                                                                                                                                          |            |       |

# UNIT -V OPTICAL NETWORKS

| 1  | a) What is optical Network? Explain the elements of optical network    | [L2] [CO5] | [6M]  |
|----|------------------------------------------------------------------------|------------|-------|
|    | b) List the advantages of optical networks.                            | [L1] [CO5] | [6M]  |
| 2  | Explain in detail about Optical network topologies                     | [L2] [CO5] | [12M] |
| 3  | a) Illustrate about basic optical networks                             | [L2] [CO5] | [6M]  |
|    | b) What are the advantages of WDM Networks?                            | [L1] [CO5] | [6M]  |
| 4  | a) Discuss about broadcast and select single hop network.              | [L2] [CO5] | [6M]  |
|    | b) Discuss about broadcast and select multi hop network.               | [L2] [CO5] | [6M]  |
| 5  | Explain in detail about wave length routed networks.                   | [L2] [CO5] | [12M] |
| 6  | a) List the advantages of EDFA.                                        | [L1] [CO6] | [4M]  |
|    | b) Explain the Performance of WDM+EDFA systems in optical networks     | [L2] [CO6] | [6M]  |
| 7  | a) Discuss the basic concept of optical CDMA.                          | [L2] [CO6] | [6M]  |
|    | b) What are the advantages of optical CDMA?                            | [L1] [CO6] | [6M]  |
| 8  | Illustrate about ultra-high capacity networks in detail.               | [L2] [CO6] | [10M] |
| 9  | a) Explain in brief about the working principle of WDM.                | [L2] [CO6] | [6M]  |
|    | b) What are the characteristics of WDM?                                | [L1] [CO6] | [6M]  |
| 10 | a) Why we need optical networks? Explain its significance.             | [L4] [CO6] | [6M]  |
|    | b) Describe about the optical CDMA network using coded sequence pulse. | [L2] [CO6] | [6M]  |

Prepared by: Dr.P.G.Gopinath, Dr.R.Ravindraiah, Dr. C.Priya, Mr.B.Ravi Babu.